MCMC genome rearrangement

نویسنده

  • István Miklós
چکیده

MOTIVATION As more and more genomes have been sequenced, genomic data is rapidly accumulating. Genome-wide mutations are believed more neutral than local mutations such as substitutions, insertions and deletions, therefore phylogenetic investigations based on inversions, transpositions and inverted transpositions are less biased by the hypothesis on neutral evolution. Although efficient algorithms exist for obtaining the inversion distance of two signed permutations, there is no reliable algorithm when both inversions and transpositions are considered. Moreover, different type of mutations happen with different rates, and it is not clear how to weight them in a distance based approach. RESULTS We introduce a Markov Chain Monte Carlo method to genome rearrangement based on a stochastic model of evolution, which can estimate the number of different evolutionary events needed to sort a signed permutation. The performance of the method was tested on simulated data, and the estimated numbers of different types of mutations were reliable. Human and Drosophila mitochondrial data were also analysed with the new method. The mixing time of the Markov Chain is short both in terms of CPU times and number of proposals. AVAILABILITY The source code in C is available on request from the author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Sampling of Transpositions and Inverted Transpositions for Bayesian MCMC

The evolutionary distance between two organisms can be determined by comparing the order of appearance of orthologous genes in their genomes. Above the numerous parsimony approaches that try to obtain the shortest sequence of rearrangement operations sorting one genome into the other, Bayesian Markov chain Monte Carlo methods have been introduced a few years ago. The computational time for conv...

متن کامل

Improving Tree Search in Phylogenetic Reconstruction from Genome Rearrangement Data

A major task in evolutionary biology is to determine the ancestral relationships among the known species, a process generally referred as phylogenetic reconstruction. In the past decade, a new type of data based on genome rearrangements has attracted increasing attention from both biologists and computer scientists. Methods for reconstructing phylogeny based on genome rearrangement data include...

متن کامل

Bayesian sampling of genomic rearrangement scenarios via double cut and join

MOTIVATION When comparing the organization of two genomes, it is important not to draw conclusions on their modes of evolution from a single most parsimonious scenario explaining their differences. Better estimations can be obtained by sampling many different genomic rearrangement scenarios. For this problem, the Double Cut and Join (DCJ) model, while less relevant, is computationally easier th...

متن کامل

Maximum likelihood estimates of pairwise rearrangement distances.

Accurate estimation of evolutionary distances between taxa is important for many phylogenetic reconstruction methods. Distances can be estimated using a range of different evolutionary models, from single nucleotide polymorphisms to large-scale genome rearrangements. Corresponding corrections for genome rearrangement distances fall into 3 categories: Empirical computational studies, Bayesian/MC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 19 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2003